Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1399–1406

http://thaijmath.in.cmu.ac.th

On 0-Minimal (0,2)-Bi-Hyperideal of Ordered Semihypergroups

Samkhan Hobanthad

Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand e-mail : samkan.hb@bru.ac.th

Abstract Focusing on the ordered semihypergroup, the goal is to find conditions of minimality of left (right) hyperideal, bi-hyperideal and (0, 2)-hyperideal in ordered semihypergroups. The study begins by examining basic properties of (0, 2)-hyperideal and bi-hyperideal. Using such knowledge demonstrates that if A is a 0-minimal (0, 2)-bi-hyperideal of an ordered semihypergroup H with zero, then either $(A^2] = \{0\}$ or A is a left 0-simple.

MSC: 20N20 Keywords: hyperideal; bi-hyperideal; ordered semihypergroup

Submission date: 03.10.2017 / Acceptance date: 08.10.2019

1. INTRODUCTION AND PRELIMINARIES

Algebraic hyperstructures were introduced in 1934 by the French mathematician F. Marty [1]. He defined hypergroups as a generalization of groups. There are many significant results regarding semihypergroups, hypergroups, hypergroups and hyperfields. D. N. Krgović ([2] and [3]) studied minimality of bi-ideal in semigroups and S. Hobanthad and W. Jantanan [4] extended the findings to semihypergroups. The main purpose of this paper seeks conditions of minimality of left (right) hyperideal, hyperideal, bi-hyperideal, (0, 2)-hyperideal and (1, 2)-hyperideal of ordered semihypergroups. This paper extend the result of W. Jantana and T. Changphas [5] to ordered semihypergroups. The author starting recalls the terminologies of semihypergroups with zero from P. Corsini and V. Leoreanu ([6] and [7]) as follows:

A hyperoperation on a nonempty set H is a map $\circ : H \times H \to P^*(H)$ where $P^*(H)$ is the family of the nonempty subset of H. If A and B are nonempty subsets of H and $x \in H$, then

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b; \ x \circ A = \{x\} \circ A \text{ and } A \circ x = A \circ \{x\}$$

Published by The Mathematical Association of Thailand. Copyright \bigodot 2021 by TJM. All rights reserved.

A semihypergroup is a system (H, \circ) where H is a nonempty set, \circ is a hyperoperation on H and $(x \circ y) \circ z = x \circ (y \circ z)$, for all $x, y, z \in H$. An element e of a semihypergroup His called an *identity* of (H, \circ) if $x \in (x \circ e) \cap (e \circ x)$ for all $x \in H$, and it is called a *scalar identity* of (H, \circ) if $(x \circ e) \cap (e \circ x) = \{x\}$, for all $x \in H$. A semihypergroup H with an element 0 such that $0 \circ x = x \circ 0 = \{0\}$ for all x in H; then, 0 is a zero element of H, and H is called a *semihypergroup with zero*.

Definition 1.1 ([8]). An algebraic hyperstructure (H, \circ, \leq) is called an *ordered semi-hypergroup* if (H, \circ) is a semihypergroup and \leq is an order relation on H such that the monotone condition holds as follows:

 $x \leq y \Rightarrow a \circ x \leq a \circ y$, for all $x, y, a \in H$.

Where, let A and B be nonempty subsets of H. If for every $a \in A$, there exist $b \in B$ such that $a \leq b$, then $A \leq B$.

A nonempty subset A of a ordered semihypergroup H is called a *subsemihypergroup* of H if $A \circ A \subseteq A$.

Definition 1.2 ([8]). A nonempty subset A of an ordered semihypergroup (H, \circ, \leq) is called a *left (right) hyperideal* of H if the following conditions hold:

1. $H \circ A \subseteq A(A \circ H \subseteq A);$

2. If $a \in A$ and $b \leq a$; then, $b \in A$ for every $b \in H$.

A is called a *hyperideal* of H if it is a left and right hyperideal. If (H, \circ, \leq) is an ordered semihypergroup and $A \subseteq H$; then, (A] is the subset of H defined as follows:

 $(A] = \{t \in H : t \le a \text{ for some } a \in A\}$

Proposition 1.3 ([8]). Let (H, \circ, \leq) be an ordered semihypergroup then the following holds:

- 1. $A \subseteq (A]$ for every $A \subseteq H$.
- 2. If $A \subseteq B$; then, $(A] \subseteq (B]$ for every $A, B \subseteq H$.
- 3. $(A] \circ (B] \subseteq (A \circ B]$ for every $A, B \subseteq H$.
- 4. ((A)] = (A) for every $A \subseteq H$.
- 5. If A and B are hyperideals of H; then, $(A \circ B]$ and $A \cup B$ are hyperideals of H.
- 6. For every $a \in H$, $(H \circ a \circ H]$ is a hyperideal of H.
- 7. If $A, B, C \subseteq H$ such that $A \subseteq B$; then, $C \circ A \subseteq C \circ B$ and $A \circ C \subseteq B \circ C$.

Definition 1.4 ([9]). Let (H, \circ, \leq) be an ordered semihypergroup and let m, n be non-negative integer. A subsemihypergroup A of H is called a (m, n)-hyperideal of H if the following hold:

- 1. $A^m \circ H \circ A^n \subseteq A;$
- 2. If $a \in A$ and $b \leq a$, then $b \in A$ for every $b \in H$ or (A] = A.

From Definition 1.4, if m = n = 1; then, A is called a *bi-hyperideal* of H. If m = 0 and n = 2; then, A is called a (0, 2)-hyperideal of H.

Definition 1.5 ([9]). A subsemilypergroup A of an ordered semilypergroup (H, \circ, \leq) is called (0, 2)-*bi-hyperideal* of H if A is both a bi-hyperideal and (0, 2)-hyperideal of H.

Let *H* be a semihypergroup with zero and *L* is a left hyperideal of *H*. Since $H \circ L^2 \subseteq H \circ L \subseteq L$; then, *L* is a (0,2)-hyperideal of *H*. Therefore, every left hyperideal of *H* is a (0,2)-hyperideal of *H*.

2. Main Results

If A is a subsemihypergroup of the ordered semihypergroup (H, \circ, \leq) ; then, $H \circ (A \cup H \circ A] \subseteq (H \circ A \cup H^2 \circ A] \subseteq (H \circ A] \subseteq (A \cup H \circ A]$. Thus, $(A \cup H \circ A]$ is a left hyperideal of H. Since,

$$\begin{aligned} (A^2 \cup A \circ H \circ A^2] \circ H \circ (A^2 \cup A \circ H \circ A^2] &\subseteq (A^2 \circ H \circ A^2 \cup A^2 \circ H \circ A \circ H \circ A^2 \\ & \cup A \circ H \circ A^2 \circ H \circ A^2 \\ & \cup A \circ H \circ A^2 \circ H \circ A \circ H \circ A^2] \\ & \subseteq (A \circ H \circ A^2] \\ & \subseteq (A^2 \cup A \circ H \circ A^2]; \end{aligned}$$

then, $(A^2 \cup A \circ H \circ A^2]$ is a bi-hyperideal of H. Since

$$(A \cup A \circ H] \circ H \subseteq (A \circ H \cup A \circ H^2] \subseteq (A \circ H] \subseteq (A \cup A \circ H]$$

 $(A\cup A\circ H]$ is a right hyperideal of H. Moreover, $(A\cup H\circ A^2]$ is a (0,2)-hyperideal of H, because

$$\begin{aligned} H \circ (A \cup H \circ A^2]^2 &= H \circ (A \cup H \circ A^2] \circ (A \cup H \circ A^2] \\ &\subseteq (H \circ A^2 \cup H \circ A \circ H \circ A^2 \cup H^2 \circ A^3 \cup H^2 \circ A^2 \circ H \circ A^2] \\ &\subseteq (H \circ A^2] \\ &\subseteq (A \cup H \circ A^2]. \end{aligned}$$

Lemma 2.1. Let (H, \circ, \leq) be an ordered semihypergroup. Then, A is a (0, 2)-hyperideal of H if and only if A is a left hyperideal of some left hyperideal of H.

Proof. If A is a (0, 2)-hyperideal of H; then,

$$(A \cup H \circ A] \circ A \subseteq (A^2 \cup H \circ A^2] \subseteq (A] = A.$$

Thus, A is a left hyperideal of left hyperideal $(A \cup H \circ A]$ of H. Conversely, assume that A is a left hyperideal of left hyperideal L of H. Then, $H \circ A^2 \subseteq H \circ L \circ A \subseteq L \circ A \subseteq A$. Let $a \in A$ and $b \in H$ be such that $b \leq a$. Since $a \in L$, so $b \in L$. The assumption implies $b \in A$. Therefore, A is (0, 2)-hyperideal of H.

Theorem 2.2. Let (H, \circ, \leq) be an ordered semihypergroup. The following statements are equivalent:

- 1. A is a (1,2)-hyperideal of H;
- 2. A is a left hyperideal of some bi-hyperideal of H;
- 3. A is a bi-hyperideal of some left hyperideal of H;
- 4. A is a (0,2)-hyperideal of some right hyperideal of H;
- 5. A is a right hyperideal of some (0, 2)-hyperideal of H.

Proof. $(1 \Rightarrow 2)$ If A is a (1,2)-hyperideal of H; then, $(A^2 \cup A \circ H \circ A^2] \circ A = (A^2 \cup A \circ H \circ A^2] \circ (A] \subseteq (A^3 \cup A \circ H \circ A^3] \subseteq (A^2 \cup A \circ H \circ A^2] \subseteq (A] = A$. Clearly, if $a \in A, b \in (A^2 \cup A \circ H \circ A^2]$ such that $b \leq a$; then, $b \in A$. Hence, A is a left hyperideal of the bi-hyperideal $(A^2 \cup A \circ H \circ A^2]$ of H.

 $(2 \Rightarrow 3)$ If A is a left hyperideal of a bi-hyperideal B of H; then, $A^2 \subseteq B \circ A \subseteq A$ and $A \circ (A \cup H \circ A] \circ A = (A] \circ (A \cup H \circ A] \circ (A] \subseteq (A^3 \cup A \circ H \circ A^2] \subseteq (A \cup B \circ H \circ B \circ A] \subseteq A$

 $(A \cup B \circ A] \subseteq (A] = A$. Let $a \in A, b \in (A \cup H \circ A]$ such that $b \leq a$. Since $a \in A$, so $a \in B$. Thus, $b \in B$. Hence, $b \in A$. Therefore, A is a bi-hyperideal of the left hyperideal $(A \cup H \circ A]$ of H.

 $(3 \Rightarrow 4)$ If A is a bi-hyperideal of some left hyperideal L of H; then $(A \cup A \circ H] \circ A^2 \subseteq (A \cup A \circ H] \circ (A^2] \subseteq (A^3 \cup A \circ H \circ A^2] \subseteq (A \cup A \circ H \circ L \circ A] \subseteq (A \cup A \circ L \circ A] \subseteq (A] = A$. Let $a \in A, b \in (A \cup A \circ H]$ such that $b \leq a$; then, $a \in L$. Thus $b \in L$. Thus $b \in A$. Hence, A is a (0, 2)-hyperideal of the right hyperideal $(A \cup A \circ H]$ of H.

 $(4 \Rightarrow 5)$ If A is a (0, 2)-hyperideal of some right hyperideal R of H; then, $A \circ (A \cup H \circ A^2] \subseteq (A^2 \cup A \circ H \circ A^2] \subseteq (A \cup R \circ H \circ A^2] \subseteq (A \cup R \circ A^2] \subseteq (A] = A$. Assume that $a \in A, b \in (A \cup H \circ A^2]$ such that $b \leq a$. Since $a \in R$, so $b \in R$. Thus, $b \in A$. Hence, A is a right hyperideal of the (0, 2)-hyperideal $(A \cup H \circ A^2]$ of H.

 $(5 \Rightarrow 1)$ If A is a right hyperideal of a (0, 2)-hyperideal R of H; then, $A \circ H \circ A^2 \subseteq A \circ H \circ R^2 \subseteq A \circ R \subseteq A$. Assume that $a \in A, b \in H$ such that $b \leq a$. Since $a \in R$, so $b \in R$. Thus, $b \in A$. Hence, A is a (1, 2)-hyperideal of H.

Lemma 2.3. Let (H, \circ, \leq) be an ordered semihypergroup and let A be a subsemihypergroup of H such that A = (A]. Then, A is a (1,2)-hyperideal of H if and only if there exist a (0,2)-hyperideal L of H and a right hyperideal R of H such that $R \circ L^2 \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1,2)-hyperideal of H. Since $(A \cup H \circ A^2]$ and $(A \cup A \circ H]$ are (0,2)-hyperideal and right hyperideal of H, respectively. Setting $L = (A \cup H \circ A^2]$ and $R = (A \cup A \circ H]$; so,

$$\begin{split} R \circ L^2 &\subseteq (A \cup A \circ H] \circ (A \cup H \circ A^2] \circ (A \cup H \circ A^2] \\ &\subseteq (A^3 \cup A^2 \circ H \circ A^2 \cup A \circ H \circ A^3 \cup A \circ H \circ A^2 \circ H \circ A^2 \\ &\cup A \circ H \circ A^2 \cup A \circ H \circ A \circ H \circ A^2 \cup A \circ H^2 \circ A^3 \\ &\cup A \circ H^2 \circ A^2 \circ H \circ A^2] \\ &\subseteq (A^3 \cup A \circ H \circ A^2] \\ &\subseteq (A] = A. \end{split}$$

Clearly, it is $A \subseteq R \cap L$. Hence, $R \circ L^2 \subseteq A \subseteq R \cap L$. Conversely, let R be a right hyperideal of H and L be a (0, 2)-hyperideal of H such that $R \circ L^2 \subseteq A \subseteq R \cap L$. Then, $A \circ H \circ A^2 \subseteq (R \cap L) \circ H \circ (R \cap L) \circ (R \cap L) \subseteq R \circ H \circ L^2 \subseteq R \circ L^2 \subseteq A$. Hence, A is a (1, 2)-hyperideal of H.

A left hyperideal, right hyperideal, hyperideal, (0, 2)-hyperideal and (0, 2)-bi-hyperideal A of an ordered semihypergroup (H, \circ, \leq) with zero will be said to be 0-minimal if $A \neq \{0\}$ and $\{0\}$ is the only left hyperideal, right hyperideal, hyperideal, (0, 2)-hyperideal, (0, 2)-bi-hyperideal, respectively of H properly contained in A. From every left hyperideal of H is a (0, 2)-hyperideal of H. Hence, if L is a 0-minimal (0, 2)-hyperideal of H and A is a left hyperideal of H contained in L; then, $A = \{0\}$ or A = L.

Lemma 2.4. Let (H, \circ, \leq) be an ordered semihypergroup with zero. If L is a 0-minimal left hyperideal of H and A is a subsemihypergroup with zero of L such that A = (A]; then, A is a (0, 2)-hyperideal of H contained in L if and only if $(A^2) = \{0\}$ or A = L.

Proof. Assume that A is a (0, 2)-hyperideal of H contained in L, then $(H \circ A^2] \subseteq L$. Since $(H \circ A^2]$ is a left hyperideal of H, so $(H \circ A^2] = \{0\}$ or $(H \circ A^2] = L$. If $(H \circ A^2] = L$.

Then, $L = (H \circ A^2] \subseteq (A] = A$. Hence, A = L. If $(H \circ A^2] = \{0\}$. Thus, $H \circ (A^2] \subseteq (H \circ A^2] = \{0\} \subseteq (A^2]$. Therefore, $(A^2]$ is a left hyperideal of H contained in L. By the minimality of L, $(A^2] = \{0\}$ or $(A^2] = L$. If $(A^2] = L$; then, $L = (A^2] \subseteq (A] = A$. Hence, A = L. The opposite direction is clear.

Lemma 2.5. Let (H, \circ, \leq) be an ordered semihypergroup with zero. If L is a 0-minimal (0, 2)-hyperideal of H; then, $(L^2] = \{0\}$ or L is a 0-minimal left hyperideal of H.

Proof. Assume that L is a 0-minimal (0, 2)-hyperideal of H. Consider $H \circ (L^2]^2 = H \circ (L^2] \circ (L^2] \subseteq (H \circ L^2] \circ (L^2] \subseteq (L^2]$. Then, $(L^2]$ is a (0, 2)-hyperideal of H contained in L. Hence, $(L^2] = \{0\}$ or $(L^2] = L$. Suppose that $(L^2] = L$. Since $H \circ L = H \circ (L^2] \subseteq (H \circ L^2] \subseteq (L] = L$. Thus, L is left hyperideal of H. Let B be a left hyperideal of H contained in L. Therefore, B is a (0, 2)-hyperideal of H contained in L. Then, $B = \{0\}$ or B = L. Thus, L is a 0-minimal left hyperideal of H.

The following corollary follows from Lemma 2.4 and Lemma 2.5.

Corollary 2.6. Let (H, \circ, \leq) be an ordered semihypergroup without zero. Then, L is a minimal (0, 2)-hyperideal of H if and only if L is a minimal left hyperideal of H.

Lemma 2.7. Let (H, \circ, \leq) be an ordered semihypergroup without zero and let A be a nonempty subset of H. Then, A is a minimal (2, 1)-hyperideal of H if and only if A is a minimal bi-hyperideal of H.

Proof. Assume that A is a minimal (2, 1)-hyperideal of H. Since, $(A^2 \circ H \circ A]^2 \circ H \circ (A^2 \circ H \circ A] \subseteq (A^2 \circ H \circ A]$ and $(A^2 \circ H \circ A] \subseteq (A] = A$; then, $(A^2 \circ H \circ A]$ is a (2, 1)-hyperideal of H contained in A. Therefore, $(A^2 \circ H \circ A] = A$. Since $A \circ H \circ A = (A^2 \circ H \circ A] \circ H \circ A \subseteq (A^2 \circ H \circ A \circ H \circ A) \subseteq (A^2 \circ H \circ A) = A$; then, A is a bi-hyperideal of H. Suppose that there exist a bi-hyperideal B of H contained in A. Then, $B^2 \circ H \circ B \subseteq B^2 \subseteq B \subseteq A$. Thus, B is a (2, 1)-hyperideal of H contained in A. Using the minimality of A, so B = A. Conversely, assume that A is a minimal bi-hyperideal of H. Then, A is a (2, 1)-hyperideal of H contained in A. Since

$$(C^{2} \circ H \circ C] \circ H \circ (C^{2} \circ H \circ C] \subseteq (C^{2} \circ H \circ C \circ H \circ C^{2} \circ H \circ C]$$
$$\subset (C^{2} \circ H \circ C],$$

so $(C^2 \circ H \circ C]$ is a bi-hyperideal of H. This implies that $(C^2 \circ H \circ C] = A$. Since $A = (C^2 \circ H \circ C] \subseteq (C] = C$, so A = C. Therefore, A is a minimal (2, 1)-hyperideal of H.

Lemma 2.8. Let (H, \circ, \leq) be an ordered semihypergroup with zero. Then, A is a (0, 2)-bi-hyperideal of H if and only if A is a hyperideal of some left hyperideal of H.

Proof. Assume that A is a (0, 2)-bi-hyperideal of H. Then, $H \circ (A^2 \cup H \circ A^2] \subseteq (H \circ A^2 \cup H^2 \circ A^2] \subseteq (H \circ A^2) \subseteq (A^2 \cup H \circ A^2]$. Hence, $(A^2 \cup H \circ A^2]$ is a left hyperideal of H. Since $A \circ (A^2 \cup H \circ A^2] \subseteq (A^3 \cup A \circ H \circ A^2] \subseteq (A] = A$ and $(A^2 \cup H \circ A^2] \circ A \subseteq (A^3 \cup H \circ A^3] \subseteq (A] = A$; so, A is a hyperideal of $(A^2 \cup H \circ A^2]$. Conversely, if A is a hyperideal of a left hyperideal L of H; by Lemma 2.1, A is a (0, 2)-hyperideal of H. Since, $A \circ H \circ A \subseteq A \circ H \circ L \subseteq A \circ L \subseteq A$, hence A is a bi-hyperideal of H. Therefore, A is a (0, 2)-bi-hyperideal of H.

Theorem 2.9. Let (H, \circ, \leq) be an ordered semihypergroup with zero scalar element 0. If A is a 0-minimal (0,2)-bi-hyperideal of H and $a \in A$; then, exactly one of the following cases occurs:

1. $A = (\{0, a\}], a^2 = \{0\}, (a \circ H \circ a] = \{0\}$ 2. $A = (\{0, a\}], a^2 = \{0\}, (a \circ H \circ a] = A$ 3. $\forall a \in A \setminus \{0\}, (H \circ a^2] = A.$

Proof. Assume that A is a 0-minimal (0, 2)-bi-hyperideal of H. Let $a \in A \setminus \{0\}$, so $(H \circ a^2] \subseteq A$. Moreover, $(H \circ a^2]$ is a (0, 2)-bi-hyperideal of H. Hence, $(H \circ a^2] = \{0\}$ or $(H \circ a^2] = A$. If $(H \circ a^2] = \{0\}$, hence either $a \circ a = \{0\}$ or $a \circ a = \{a\}$ or $a \circ a = \{0, a\}$ or there exist $x \in a^2$ such that $x \notin \{0, a\}$. If $a \circ a = \{a\}$ this is impossible, because $a \in a \circ a \circ a \subseteq H \circ a^2 = \{0\}$. If $a \circ a = \{0, a\}$, so $(a \circ a) \circ a = \{0, a\} \circ a = 0 \circ a \cup a \circ a = \{0, a\}$. This is a contradiction, because $a \in a \circ a \circ a \subseteq H \circ a^2 = \{0\}$. If there exists $x \in a^2$ such that $x \notin \{0, a\}$, so $x \in A$. Then, $\{0, x\} \subseteq \{0, x, a\} \subseteq A$. Since $H \circ x \subseteq H \circ a^2 = \{0\}$, so $H \circ x = \{0\}$. Thus, $H \circ x^2 = (H \circ x) \circ x = \{0\}$, consider

$$\begin{aligned} H \circ (\{0, x\}]^2 &= H \circ (\{0, x\}] \circ (\{0, x\}] \\ &= (H \circ 0^2 \cup H \circ 0 \circ x \cup H \circ x \circ 0 \cup H \circ x^2] \\ &= (\{0\}] \subseteq (\{0, x\}], \end{aligned}$$

so $(\{0, x\}]$ is a (0, 2)-hyperideal of H. Since

$$\begin{split} (\{0, x\}] \circ H \circ (\{0, x\}] &= (x \circ H \circ x] \\ &= (x \circ \{0\}] \\ &= (\{0\}] \subseteq (\{0, x\}], \end{split}$$

hence $(\{0, x\}]$ is a (0, 2)-bi-hyperideal of H contained in A. If $(\{0, x\}] = A$; then,

$$\begin{aligned} a \circ a &\subseteq A \circ A \subseteq H \circ (\{0, x\}] \\ &\subseteq (H \circ x] \\ &\subseteq (H \circ a^2] = (\{0\}]. \end{aligned}$$

This is a contradiction, because $\{0, x\} \subseteq a \circ a$. Hence, $(\{0, x\}] \neq A$. Using the minimality of A, so $a^2 = \{0\}$ and $A = (\{0, a\}]$. It is clear that $a \circ H \circ a$ is a bi-hyperideal of H contained in A and

$$H \circ (a \circ H \circ a]^2 \subseteq (H \circ a \circ H \circ a^2 \circ H \circ a]$$
$$= (H \circ a \circ H \circ \{0\} \circ H \circ a]$$
$$= (\{0\}] \subseteq (a \circ H \circ a].$$

Then, $a \circ H \circ a$ is a (0, 2)-bi-hyperideal of H contained in A. Thus, $a \circ H \circ a = \{0\}$ or $a \circ H \circ a = A$.

The following corollary follows from Theorem 2.9.

Corollary 2.10. Let A be a 0-minimal (0,2)-bi-hyperideal of an ordered semihypergroup (H, \circ, \leq) with a zero. If $(A^2] \neq \{0\}$; then, $A = (H \circ a^2)$ for every $a \in A \setminus \{0\}$.

An ordered semihypergroup H with zero is called a 0-(0,2)-bisimple if $(H^2] \neq \{0\}$ and $\{0\}$ is the only proper (0,2)-bi-hyperideal of H.

Corollary 2.11. An ordered semihypergroup H with zero scalar is 0-(0,2)-bisimple if and only if $(H \circ a^2] = H$ for every $a \in H \setminus \{0\}$.

Proof. Assume that $(H \circ a^2] = H$ for all $a \in H \setminus \{0\}$. Let A be a (0, 2)-bi-hyperideal of H such that $A \neq \{0\}$. Let $a \in A \setminus \{0\}$. Since, $H = (H \circ a^2] \subseteq (H \circ A^2] \subseteq (A] = A$; so, A = H. Since $H = (H \circ a^2] \subseteq (H \circ H] = (H^2]$. Then, $(H^2] \neq \{0\}$. Therefore, H is a 0-(0, 2)-bisimple. The converse statement follows from Corollary 2.10.

Theorem 2.12. Let (H, \circ, \leq) be an ordered semihypergroups with zero. Then, H is 0-(0,2)-bisimple if and only if H is a left 0-simple.

Proof. Assume that H is 0-(0, 2)-bisimple. If A is a left hyperideal of H, so A is a (0, 2)-bi-hyperideal of H. Hence, $A = \{0\}$ or A = H. Conversely, assume that H is left 0-simple. Let $a \in H \setminus \{0\}$. Then, $(H \circ a] = H$, hence $H = (H \circ a] = ((H \circ a] \circ a] \subseteq ((H \circ a] \circ (a]) \subseteq ((H \circ a^2)] = (H \circ a^2)$. By corollary 2.11, H is 0-(0, 2)-bisimple.

Theorem 2.13. Let (H, \circ, \leq) be an ordered semihypergroups with zero. If A is a 0-minimal (0, 2)-bi-hyperideal of H; then, either $(A^2] = \{0\}$ or A is left 0-simple.

Proof. Assume that A is a 0-minimal (0, 2)-bi-hyperideal of H such that $(A^2] \neq \{0\}$. By Corollary 2.10, $(H \circ a^2] = A$ for every $a \in A \setminus \{0\}$. Let $a \in A \setminus \{0\}$. Since

$$\begin{split} [A \circ a^2] \circ H \circ (A \circ a^2] &\subseteq (A \circ a^2 \circ H \circ A \circ a^2] \\ &\subseteq (A \circ A^2 \circ H \circ A \circ a^2] \\ &= (A \circ A \circ (A \circ H \circ A) \circ a^2] \\ &\subseteq (A^3 \circ a^2] \\ &\subseteq (A \circ a^2] \quad \text{and} \\ H \circ (A \circ a^2]^2 &= H \circ (A \circ a^2] \circ (A \circ a^2] \\ &\subseteq (H \circ A \circ a^2 \circ A \circ a^2] \\ &\subseteq (H \circ A \circ A^2 \circ A \circ a^2] \\ &= ((H \circ A^2) \circ A \circ A \circ a^2] \\ &= ((H \circ A^2) \circ A \circ A \circ a^2] \\ &\subseteq (A^3 \circ a^2] \\ &\subseteq (A \circ a^2]. \end{split}$$

Thus, $(A \circ a^2]$ is a (0, 2)-bi-hyperideal of H contained in A. Hence, $(A \circ a^2] = \{0\}$ or $(A \circ a^2] = A$. Since $(H \circ a^2] = A$ for every $a \in A \setminus \{0\}$. Then, $a^2 \neq \{0\}$. Therefore, there exist $0 \neq x \in a^2 \subseteq A$. Clearly, $x^2 \neq \{0\}$ and $x^2 \subseteq a^2 \circ a^2 \subseteq A \circ a^2 \subseteq (A \circ a^2]$. Hence, $(A \circ a^2] = A$ and conclude by Corollary 2.11 that A is 0-(0, 2)-bisimple. By Theorem 2.12, applies A is left 0-simple.

ACKNOWLEDGEMENTS

This research was supported by Research and Development Institute, Buriram Rajabhat University.

References

- F. Marty, Sur uni generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm (1934) 45–49.
- [2] D.N. Krgović, On 0-minimal bi-ideals of semigroups, Publ. Inst. Math. (1980) 135– 137.
- [3] D.N. Krgović, On 0-minimal (0,2)-bi-ideal of semigroups, Publ. Inst. Math. (1982) 103–107.
- [4] S. Hobanthad, W. Jantanan, On 0-minimal bi-hyperideal of semihypergroups with zero, National and International Research Conference, Buriram, Thailand (2015) 117–121.
- [5] W. Jantanan, T. Changphas, On 0-minimal (0, 2)-bi-ideal in ordered semigroups, Quasigroups Related Systems 21 (2013) 51–58.
- [6] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
- [7] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics (Dordrecht), Kluwer Academic Publishers, Dordrecht, 2003.
- [8] D. Heidari, B. Davvaz, On ordered hyperstructure, U.P.B. Sci. Bull. Series A 73 (2) (2011) 85–97.
- [9] T. Changphas, B. Davvaz, Bi-hyperideals and Quasi-hyperideals in Ordered Semihypergroups, Ital. J. Pure Appl. Math. 35 (2015) 493–508.