ISSN 1686-0209

On 0-Minimal (0,2)-Bi-Hyperideal of Ordered Semihypergroups

Samkhan Hobanthad
Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand
e-mail : samkan.hb@bru.ac.th

Abstract

Focusing on the ordered semihypergroup, the goal is to find conditions of minimality of left (right) hyperideal, bi-hyperideal and (0,2)-hyperideal in ordered semihypergroups. The study begins by examining basic properties of $(0,2)$-hyperideal and bi-hyperideal. Using such knowledge demonstrates that if A is a 0 -minimal $(0,2)$-bi-hyperideal of an ordered semihypergroup H with zero, then either ($\left.A^{2}\right]=\{0\}$ or A is a left 0 -simple.

MSC: 20N20
Keywords: hyperideal; bi-hyperideal; ordered semihypergroup

Submission date: 03.10.2017 / Acceptance date: 08.10.2019

1. Introduction and Preliminaries

Algebraic hyperstructures were introduced in 1934 by the French mathematician F. Marty [1]. He defined hypergroups as a generalization of groups. There are many significant results regarding semihypergroups, hypergroups, hyperrings and hyperfields. D. N. Krgović ([2] and [3]) studied minimality of bi-ideal in semigroups and S. Hobanthad and W. Jantanan [4] extended the findings to semihypergroups. The main purpose of this paper seeks conditions of minimality of left (right) hyperideal, hyperideal, bi-hyperideal, (0,2)-hyperideal and (1,2)-hyperideal of ordered semihypergroups. This paper extend the result of W. Jantana and T. Changphas [5] to ordered semihypergroups. The author starting recalls the terminologies of semihypergroups with zero from P. Corsini and V. Leoreanu ([6] and [7]) as follows:

A hyperoperation on a nonempty set H is a map $\circ: H \times H \rightarrow P^{*}(H)$ where $P^{*}(H)$ is the family of the nonempty subset of H. If A and B are nonempty subsets of H and $x \in H$, then

$$
A \circ B=\bigcup_{a \in A, b \in B} a \circ b ; x \circ A=\{x\} \circ A \text { and } A \circ x=A \circ\{x\}
$$

A semihypergroup is a system (H, \circ) where H is a nonempty set, o is a hyperoperation on H and $(x \circ y) \circ z=x \circ(y \circ z)$, for all $x, y, z \in H$. An element e of a semihypergroup H is called an identity of (H, \circ) if $x \in(x \circ e) \cap(e \circ x)$ for all $x \in H$, and it is called a scalar identity of (H, \circ) if $(x \circ e) \cap(e \circ x)=\{x\}$, for all $x \in H$. A semihypergroup H with an element 0 such that $0 \circ x=x \circ 0=\{0\}$ for all x in H; then, 0 is a zero element of H, and H is called a semihypergroup with zero.
Definition 1.1 ([8]). An algebraic hyperstructure (H, \circ, \leq) is called an ordered semihypergroup if (H, \circ) is a semihypergroup and \leq is an order relation on H such that the monotone condition holds as follows:

$$
x \leq y \Rightarrow a \circ x \leq a \circ y, \text { for all } x, y, a \in H
$$

Where, let A and B be nonempty subsets of H. If for every $a \in A$, there exist $b \in B$ such that $a \leq b$, then $A \leq B$.

A nonempty subset A of a ordered semihypergroup H is called a subsemihypergroup of H if $A \circ A \subseteq A$.

Definition 1.2 ([8]). A nonempty subset A of an ordered semihypergroup
(H, \circ, \leq) is called a left (right) hyperideal of H if the following conditions hold:

1. $H \circ A \subseteq A(A \circ H \subseteq A)$;
2. If $a \in A$ and $b \leq a$; then, $b \in A$ for every $b \in H$.
A is called a hyperideal of H if it is a left and right hyperideal. If (H, \circ, \leq) is an ordered semihypergroup and $A \subseteq H$; then, $(A]$ is the subset of H defined as follows:

$$
(A]=\{t \in H: t \leq a \text { for some } a \in A\}
$$

Proposition 1.3 ([8]). Let (H, \circ, \leq) be an ordered semihypergroup then the following holds:

1. $A \subseteq(A]$ for every $A \subseteq H$.
2. If $A \subseteq B$; then, $(A] \subseteq(B]$ for every $A, B \subseteq H$.
3. $(A] \circ(B] \subseteq(A \circ B]$ for every $A, B \subseteq H$.
4. $((A]]=(A]$ for every $A \subseteq H$.
5. If A and B are hyperideals of H; then, $(A \circ B]$ and $A \cup B$ are hyperideals of H.
6. For every $a \in H,(H \circ a \circ H]$ is a hyperideal of H.
7. If $A, B, C \subseteq H$ such that $A \subseteq B$; then, $C \circ A \subseteq C \circ B$ and $A \circ C \subseteq B \circ C$.

Definition 1.4 ([9]). Let (H, \circ, \leq) be an ordered semihypergroup and let m, n be nonnegative integer. A subsemihypergroup A of H is called a (m, n)-hyperideal of H if the following hold:

1. $A^{m} \circ H \circ A^{n} \subseteq A$;
2. If $a \in A$ and $b \leq a$, then $b \in A$ for every $b \in H$ or $(A]=A$.

From Definition 1.4, if $m=n=1$; then, A is called a bi-hyperideal of H. If $m=0$ and $n=2$; then, A is called a $(0,2)$-hyperideal of H.
Definition 1.5 ([9]). A subsemihypergroup A of an ordered semihypergroup (H, \circ, \leq) is called $(0,2)$-bi-hyperideal of H if A is both a bi-hyperideal and (0,2)-hyperideal of H.

Let H be a semihypergroup with zero and L is a left hyperideal of H. Since $H \circ L^{2} \subseteq$ $H \circ L \subseteq L$; then, L is a $(0,2)$-hyperideal of H. Therefore, every left hyperideal of H is a (0,2)-hyperideal of H.

2. Main Results

If A is a subsemihypergroup of the ordered semihypergroup (H, \circ, \leq); then, $H \circ(A \cup$ $H \circ A] \subseteq\left(H \circ A \cup H^{2} \circ A\right] \subseteq(H \circ A] \subseteq(A \cup H \circ A]$. Thus, $(A \cup H \circ A]$ is a left hyperideal of H. Since,

$$
\begin{aligned}
\left(A^{2} \cup A \circ H \circ A^{2}\right] \circ H \circ\left(A^{2} \cup A \circ H \circ A^{2}\right] \subseteq & \left(A^{2} \circ H \circ A^{2} \cup A^{2} \circ H \circ A \circ H \circ A^{2}\right. \\
& \cup A \circ H \circ A^{2} \circ H \circ A^{2} \\
& \left.\cup A \circ H \circ A^{2} \circ H \circ A \circ H \circ A^{2}\right] \\
\subseteq & \left(A \circ H \circ A^{2}\right] \\
\subseteq & \left(A^{2} \cup A \circ H \circ A^{2}\right] ;
\end{aligned}
$$

then, $\left(A^{2} \cup A \circ H \circ A^{2}\right]$ is a bi-hyperideal of H. Since

$$
(A \cup A \circ H] \circ H \subseteq\left(A \circ H \cup A \circ H^{2}\right] \subseteq(A \circ H] \subseteq(A \cup A \circ H],
$$

$(A \cup A \circ H]$ is a right hyperideal of H. Moreover, $\left(A \cup H \circ A^{2}\right]$ is a (0,2)-hyperideal of H, because

$$
\begin{aligned}
H \circ\left(A \cup H \circ A^{2}\right]^{2} & =H \circ\left(A \cup H \circ A^{2}\right] \circ\left(A \cup H \circ A^{2}\right] \\
& \subseteq\left(H \circ A^{2} \cup H \circ A \circ H \circ A^{2} \cup H^{2} \circ A^{3} \cup H^{2} \circ A^{2} \circ H \circ A^{2}\right] \\
& \subseteq\left(H \circ A^{2}\right] \\
& \subseteq\left(A \cup H \circ A^{2}\right] .
\end{aligned}
$$

Lemma 2.1. Let (H, \circ, \leq) be an ordered semihypergroup. Then, A is a $(0,2)$-hyperideal of H if and only if A is a left hyperideal of some left hyperideal of H.
Proof. If A is a $(0,2)$-hyperideal of H; then,

$$
(A \cup H \circ A] \circ A \subseteq\left(A^{2} \cup H \circ A^{2}\right] \subseteq(A]=A .
$$

Thus, A is a left hyperideal of left hyperideal $(A \cup H \circ A]$ of H. Conversely, assume that A is a left hyperideal of left hyperideal L of H. Then, $H \circ A^{2} \subseteq H \circ L \circ A \subseteq L \circ A \subseteq A$. Let $a \in A$ and $b \in H$ be such that $b \leq a$. Since $a \in L$, so $b \in L$. The assumption implies $b \in A$. Therefore, A is (0,2)-hyperideal of H.

Theorem 2.2. Let (H, \circ, \leq) be an ordered semihypergroup. The following statements are equivalent:

1. A is a $(1,2)$-hyperideal of H;
2. A is a left hyperideal of some bi-hyperideal of H;
3. A is a bi-hyperideal of some left hyperideal of H;
4. A is a $(0,2)$-hyperideal of some right hyperideal of H;
5. A is a right hyperideal of some $(0,2)$-hyperideal of H.

Proof. $(1 \Rightarrow 2)$ If A is a $(1,2)$-hyperideal of H; then, $\left(A^{2} \cup A \circ H \circ A^{2}\right] \circ A=\left(A^{2} \cup\right.$ $\left.A \circ H \circ A^{2}\right] \circ(A] \subseteq\left(A^{3} \cup A \circ H \circ A^{3}\right] \subseteq\left(A^{2} \cup A \circ H \circ A^{2}\right] \subseteq(A]=A$. Clearly, if $a \in A, b \in\left(A^{2} \cup A \circ H \circ A^{2}\right]$ such that $b \leq a$; then, $b \in A$. Hence, A is a left hyperideal of the bi-hyperideal $\left(A^{2} \cup A \circ H \circ A^{2}\right]$ of H.
$(2 \Rightarrow 3)$ If A is a left hyperideal of a bi-hyperideal B of H; then, $A^{2} \subseteq B \circ A \subseteq A$ and $A \circ(A \cup H \circ A] \circ A=(A] \circ(A \cup H \circ A] \circ(A] \subseteq\left(A^{3} \cup A \circ H \circ A^{2}\right] \subseteq(A \cup B \circ H \circ B \circ A] \subseteq$
$(A \cup B \circ A] \subseteq(A]=A$. Let $a \in A, b \in(A \cup H \circ A]$ such that $b \leq a$. Since $a \in A$, so $a \in B$. Thus, $b \in B$. Hence, $b \in A$. Therefore, A is a bi-hyperideal of the left hyperideal $(A \cup H \circ A]$ of H.
$(3 \Rightarrow 4)$ If A is a bi-hyperideal of some left hyperideal L of H; then $(A \cup A \circ H] \circ A^{2} \subseteq$ $(A \cup A \circ H] \circ\left(A^{2}\right] \subseteq\left(A^{3} \cup A \circ H \circ A^{2}\right] \subseteq(A \cup A \circ H \circ L \circ A] \subseteq(A \cup A \circ L \circ A] \subseteq(A]=A$. Let $a \in A, b \in(A \cup A \circ H]$ such that $b \leq a$; then, $a \in L$. Thus $b \in L$. Thus $b \in A$. Hence, A is a (0,2)-hyperideal of the right hyperideal $(A \cup A \circ H]$ of H.
$(4 \Rightarrow 5)$ If A is a $(0,2)$-hyperideal of some right hyperideal R of H; then, $A \circ(A \cup$ $\left.H \circ A^{2}\right] \subseteq\left(A^{2} \cup A \circ H \circ A^{2}\right] \subseteq\left(A \cup R \circ H \circ A^{2}\right] \subseteq\left(A \cup R \circ A^{2}\right] \subseteq(A]=A$. Assume that $a \in A, b \in\left(A \cup H \circ A^{2}\right]$ such that $b \leq a$. Since $a \in R$, so $b \in R$. Thus, $b \in A$. Hence, A is a right hyperideal of the (0,2)-hyperideal $\left(A \cup H \circ A^{2}\right.$] of H.
$(5 \Rightarrow 1)$ If A is a right hyperideal of a (0,2)-hyperideal R of H; then, $A \circ H \circ A^{2} \subseteq$ $A \circ H \circ R^{2} \subseteq A \circ R \subseteq A$. Assume that $a \in A, b \in H$ such that $b \leq a$. Since $a \in R$, so $b \in R$. Thus, $b \in A$. Hence, A is a (1,2)-hyperideal of H.

Lemma 2.3. Let (H, \circ, \leq) be an ordered semihypergroup and let A be a subsemihypergroup of H such that $A=(A]$. Then, A is a $(1,2)$-hyperideal of H if and only if there exist $a(0,2)$-hyperideal L of H and a right hyperideal R of H such that $R \circ L^{2} \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1,2)-hyperideal of H. Since $\left(A \cup H \circ A^{2}\right]$ and $(A \cup A \circ H]$ are (0,2)-hyperideal and right hyperideal of H, respectively.
Setting $L=\left(A \cup H \circ A^{2}\right]$ and $R=(A \cup A \circ H]$; so,

$$
\begin{aligned}
R \circ L^{2} \subseteq & (A \cup A \circ H] \circ\left(A \cup H \circ A^{2}\right] \circ\left(A \cup H \circ A^{2}\right] \\
\subseteq & \left(A^{3} \cup A^{2} \circ H \circ A^{2} \cup A \circ H \circ A^{3} \cup A \circ H \circ A^{2} \circ H \circ A^{2}\right. \\
& \cup A \circ H \circ A^{2} \cup A \circ H \circ A \circ H \circ A^{2} \cup A \circ H^{2} \circ A^{3} \\
& \left.\cup A \circ H^{2} \circ A^{2} \circ H \circ A^{2}\right] \\
\subseteq & \left(A^{3} \cup A \circ H \circ A^{2}\right] \\
\subseteq & (A]=A .
\end{aligned}
$$

Clearly, it is $A \subseteq R \cap L$. Hence, $R \circ L^{2} \subseteq A \subseteq R \cap L$. Conversely, let R be a right hyperideal of H and L be a (0,2)-hyperideal of H such that $R \circ L^{2} \subseteq A \subseteq R \cap L$. Then, $A \circ H \circ A^{2} \subseteq(R \cap L) \circ H \circ(R \cap L) \circ(R \cap L) \subseteq R \circ H \circ L^{2} \subseteq R \circ L^{2} \subseteq A$. Hence, A is a (1,2)-hyperideal of H.

A left hyperideal, right hyperideal, hyperideal, (0, 2)-hyperideal and (0,2)-bi-hyperideal A of an ordered semihypergroup (H, \circ, \leq) with zero will be said to be 0 -minimal if $A \neq\{0\}$ and $\{0\}$ is the only left hyperideal, right hyperideal, hyperideal, (0,2)-hyperideal, (0,2)-bi-hyperideal, respectively of H properly contained in A. From every left hyperideal of H is a $(0,2)$-hyperideal of H. Hence, if L is a 0 -minimal $(0,2)$-hyperideal of H and A is a left hyperideal of H contained in L; then, $A=\{0\}$ or $A=L$.

Lemma 2.4. Let (H, \circ, \leq) be an ordered semihypergroup with zero. If L is a 0 -minimal left hyperideal of H and A is a subsemihypergroup with zero of L such that $A=(A]$; then, A is a $(0,2)$-hyperideal of H contained in L if and only if $\left(A^{2}\right]=\{0\}$ or $A=L$.

Proof. Assume that A is a $(0,2)$-hyperideal of H contained in L, then $\left(H \circ A^{2}\right] \subseteq L$. Since ($H \circ A^{2}$] is a left hyperideal of H, so $\left(H \circ A^{2}\right]=\{0\}$ or $\left(H \circ A^{2}\right]=L$. If $\left(H \circ A^{2}\right]=L$.

Then, $L=\left(H \circ A^{2}\right] \subseteq(A]=A$. Hence, $A=L$. If $\left(H \circ A^{2}\right]=\{0\}$. Thus, $H \circ\left(A^{2}\right] \subseteq$ $\left(H \circ A^{2}\right]=\{0\} \subseteq\left(A^{2}\right]$. Therefore, $\left(A^{2}\right]$ is a left hyperideal of H contained in L. By the minimality of $L,\left(A^{2}\right]=\{0\}$ or $\left(A^{2}\right]=L$. If $\left(A^{2}\right]=L$; then, $L=\left(A^{2}\right] \subseteq(A]=A$. Hence, $A=L$. The opposite direction is clear.

Lemma 2.5. Let (H, \circ, \leq) be an ordered semihypergroup with zero. If L is a 0 -minimal $(0,2)$-hyperideal of H; then, $\left(L^{2}\right]=\{0\}$ or L is a 0 -minimal left hyperideal of H.

Proof. Assume that L is a 0-minimal (0,2)-hyperideal of H. Consider $H \circ\left(L^{2}\right]^{2}=H \circ$ $\left(L^{2}\right] \circ\left(L^{2}\right] \subseteq\left(H \circ L^{2}\right] \circ\left(L^{2}\right] \subseteq\left(L^{2}\right]$. Then, $\left(L^{2}\right]$ is a $(0,2)$-hyperideal of H contained in L. Hence, $\left(L^{2}\right]=\{0\}$ or $\left(L^{2}\right]=L$. Suppose that $\left(L^{2}\right]=L$. Since $H \circ L=H \circ\left(L^{2}\right] \subseteq$ $\left(H \circ L^{2}\right] \subseteq(L]=L$. Thus, L is left hyperideal of H. Let B be a left hyperideal of H contained in L. Therefore, B is a $(0,2)$-hyperideal of H contained in L. Then, $B=\{0\}$ or $B=L$. Thus, L is a 0 -minimal left hyperideal of H.

The following corollary follows from Lemma 2.4 and Lemma 2.5.
Corollary 2.6. Let (H, \circ, \leq) be an ordered semihypergroup without zero. Then, L is a minimal $(0,2)$-hyperideal of H if and only if L is a minimal left hyperideal of H.

Lemma 2.7. Let (H, \circ, \leq) be an ordered semihypergroup without zero and let A be a nonempty subset of H. Then, A is a minimal (2,1)-hyperideal of H if and only if A is a minimal bi-hyperideal of H.

Proof. Assume that A is a minimal (2,1)-hyperideal of H. Since, $\left(A^{2} \circ H \circ A\right]^{2} \circ H \circ\left(A^{2} \circ\right.$ $H \circ A] \subseteq\left(A^{2} \circ H \circ A\right]$ and $\left(A^{2} \circ H \circ A\right] \subseteq(A]=A$; then, $\left(A^{2} \circ H \circ A\right]$ is a (2,1)-hyperideal of H contained in A. Therefore, $\left(A^{2} \circ H \circ A\right]=A$. Since $A \circ H \circ A=\left(A^{2} \circ H \circ A\right] \circ H \circ A \subseteq$ $\left(A^{2} \circ H \circ A \circ H \circ A\right] \subseteq\left(A^{2} \circ H \circ A\right]=A$; then, A is a bi-hyperideal of H. Suppose that there exist a bi-hyperideal B of H contained in A. Then, $B^{2} \circ H \circ B \subseteq B^{2} \subseteq B \subseteq A$. Thus, B is a (2,1)-hyperideal of H contained in A. Using the minimality of A, so $B=A$. Conversely, assume that A is a minimal bi-hyperideal of H. Then, A is a (2,1)-hyperideal of H. Let C be a $(2,1)$-hyperideal of H contained in A. Since

$$
\begin{aligned}
\left(C^{2} \circ H \circ C\right] \circ H \circ\left(C^{2} \circ H \circ C\right] & \subseteq\left(C^{2} \circ H \circ C \circ H \circ C^{2} \circ H \circ C\right] \\
& \subseteq\left(C^{2} \circ H \circ C\right],
\end{aligned}
$$

so $\left(C^{2} \circ H \circ C\right]$ is a bi-hyperideal of H. This implies that $\left(C^{2} \circ H \circ C\right]=A$. Since $A=\left(C^{2} \circ H \circ C\right] \subseteq(C]=C$, so $A=C$. Therefore, A is a minimal $(2,1)$-hyperideal of H.

Lemma 2.8. Let (H, \circ, \leq) be an ordered semihypergroup with zero. Then, A is a (0,2)-bi-hyperideal of H if and only if A is a hyperideal of some left hyperideal of H.
Proof. Assume that A is a (0,2)-bi-hyperideal of H. Then, $H \circ\left(A^{2} \cup H \circ A^{2}\right] \subseteq(H \circ$ $\left.A^{2} \cup H^{2} \circ A^{2}\right] \subseteq\left(H \circ A^{2}\right] \subseteq\left(A^{2} \cup H \circ A^{2}\right]$. Hence, $\left(A^{2} \cup H \circ A^{2}\right]$ is a left hyperideal of H. Since $A \circ\left(A^{2} \cup H \circ A^{2}\right] \subseteq\left(A^{3} \cup A \circ H \circ A^{2}\right] \subseteq(A]=A$ and $\left(A^{2} \cup H \circ A^{2}\right] \circ A \subseteq$ $\left(A^{3} \cup H \circ A^{3}\right] \subseteq(A]=A$; so, A is a hyperideal of $\left(A^{2} \cup H \circ A^{2}\right]$. Conversely, if A is a hyperideal of a left hyperideal L of H; by Lemma $2.1, A$ is a $(0,2)$-hyperideal of H. Since, $A \circ H \circ A \subseteq A \circ H \circ L \subseteq A \circ L \subseteq A$, hence A is a bi-hyperideal of H. Therefore, A is a $(0,2)$-bi-hyperideal of H.

Theorem 2.9. Let (H, \circ, \leq) be an ordered semihypergroup with zero scalar element 0 . If A is a 0-minimal $(0,2)$-bi-hyperideal of H and $a \in A$; then, exactly one of the following cases occurs:

$$
\begin{aligned}
& \text { 1. } A=(\{0, a\}], a^{2}=\{0\},(a \circ H \circ a]=\{0\} \\
& \text { 2. } A=(\{0, a\}], a^{2}=\{0\},(a \circ H \circ a]=A \\
& \text { 3. } \forall a \in A \backslash\{0\},\left(H \circ a^{2}\right]=A .
\end{aligned}
$$

Proof. Assume that A is a 0 -minimal (0,2)-bi-hyperideal of H. Let $a \in A \backslash\{0\}$, so $\left(H \circ a^{2}\right] \subseteq A$. Moreover, $\left(H \circ a^{2}\right]$ is a $(0,2)$-bi-hyperideal of H. Hence, $\left(H \circ a^{2}\right]=\{0\}$ or $\left(H \circ a^{2}\right]=A$. If $\left(H \circ a^{2}\right]=\{0\}$, hence either $a \circ a=\{0\}$ or $a \circ a=\{a\}$ or $a \circ a=\{0, a\}$ or there exist $x \in a^{2}$ such that $x \notin\{0, a\}$. If $a \circ a=\{a\}$ this is impossible, because $a \in a \circ a \circ a \subseteq H \circ a^{2}=\{0\}$. If $a \circ a=\{0, a\}$, so $(a \circ a) \circ a=\{0, a\} \circ a=0 \circ a \cup a \circ a=\{0, a\}$. This is a contradiction, because $a \in a \circ a \circ a \subseteq H \circ a^{2}=\{0\}$. If there exists $x \in a^{2}$ such that $x \notin\{0, a\}$, so $x \in A$. Then, $\{0, x\} \subseteq\{0, x, a\} \subseteq A$. Since $H \circ x \subseteq H \circ a^{2}=\{0\}$, so $H \circ x=\{0\}$. Thus, $H \circ x^{2}=(H \circ x) \circ x=\{0\}$, consider

$$
\begin{aligned}
H \circ(\{0, x\}]^{2} & =H \circ(\{0, x\}] \circ(\{0, x\}] \\
& =\left(H \circ 0^{2} \cup H \circ 0 \circ x \cup H \circ x \circ 0 \cup H \circ x^{2}\right] \\
& =(\{0\}] \subseteq(\{0, x\}],
\end{aligned}
$$

so $(\{0, x\}]$ is a $(0,2)$-hyperideal of H. Since

$$
\begin{aligned}
(\{0, x\}] \circ H \circ(\{0, x\}] & =(x \circ H \circ x] \\
& =(x \circ\{0\}] \\
& =(\{0\}] \subseteq(\{0, x\}],
\end{aligned}
$$

hence $(\{0, x\}]$ is a $(0,2)$-bi-hyperideal of H contained in A. If $(\{0, x\}]=A$; then,

$$
\begin{aligned}
a \circ a \subseteq A \circ A & \subseteq H \circ(\{0, x\}] \\
& \subseteq(H \circ x] \\
& \subseteq\left(H \circ a^{2}\right]=(\{0\}] .
\end{aligned}
$$

This is a contradiction, because $\{0, x\} \subseteq a \circ a$. Hence, $(\{0, x\}] \neq A$. Using the minimality of A, so $a^{2}=\{0\}$ and $A=(\{0, a\}]$. It is clear that $a \circ H \circ a$ is a bi-hyperideal of H contained in A and

$$
\begin{aligned}
H \circ(a \circ H \circ a]^{2} & \subseteq\left(H \circ a \circ H \circ a^{2} \circ H \circ a\right] \\
& =(H \circ a \circ H \circ\{0\} \circ H \circ a] \\
& =(\{0\}] \subseteq(a \circ H \circ a] .
\end{aligned}
$$

Then, $a \circ H \circ a$ is a (0,2)-bi-hyperideal of H contained in A. Thus, $a \circ H \circ a=\{0\}$ or $a \circ H \circ a=A$.

The following corollary follows from Theorem 2.9.
Corollary 2.10. Let A be a 0 -minimal (0,2)-bi-hyperideal of an ordered semihypergroup (H, \circ, \leq) with a zero. If $\left(A^{2}\right] \neq\{0\}$; then, $A=\left(H \circ a^{2}\right]$ for every $a \in A \backslash\{0\}$.

An ordered semihypergroup H with zero is called a $0-(0,2)$-bisimple if $\left(H^{2}\right] \neq\{0\}$ and $\{0\}$ is the only proper $(0,2)$-bi-hyperideal of H.

Corollary 2.11. An ordered semihypergroup H with zero scalar is $0-(0,2)$-bisimple if and only if $\left(H \circ a^{2}\right]=H$ for every $a \in H \backslash\{0\}$.

Proof. Assume that $\left(H \circ a^{2}\right]=H$ for all $a \in H \backslash\{0\}$. Let A be a (0,2)-bi-hyperideal of H such that $A \neq\{0\}$. Let $a \in A \backslash\{0\}$. Since, $H=\left(H \circ a^{2}\right] \subseteq\left(H \circ A^{2}\right] \subseteq(A]=A$; so, $A=H$. Since $H=\left(H \circ a^{2}\right] \subseteq(H \circ H]=\left(H^{2}\right]$. Then, $\left(H^{2}\right] \neq\{0\}$. Therefore, H is a $0-(0,2)$-bisimple. The converse statement follows from Corollary 2.10.

Theorem 2.12. Let (H, \circ, \leq) be an ordered semihypergroups with zero. Then, H is $0-(0,2)$-bisimple if and only if H is a left 0 -simple.

Proof. Assume that H is $0-(0,2)$-bisimple. If A is a left hyperideal of H, so A is a (0,2)-bihyperideal of H. Hence, $A=\{0\}$ or $A=H$. Conversely, assume that H is left 0 -simple. Let $a \in H \backslash\{0\}$. Then, $(H \circ a]=H$, hence $H=(H \circ a]=((H \circ a] \circ a] \subseteq((H \circ a] \circ(a]] \subseteq$ $\left(\left(H \circ a^{2}\right]\right]=\left(H \circ a^{2}\right]$. By corollary 2.11, H is $0-(0,2)$-bisimple.

Theorem 2.13. Let (H, \circ, \leq) be an ordered semihypergroups with zero. If A is aminimal $(0,2)$-bi-hyperideal of H; then, either $\left(A^{2}\right]=\{0\}$ or A is left 0 -simple.

Proof. Assume that A is a 0 -minimal $(0,2)$-bi-hyperideal of H such that $\left(A^{2}\right] \neq\{0\}$. By Corollary 2.10, $\left(H \circ a^{2}\right]=A$ for every $a \in A \backslash\{0\}$. Let $a \in A \backslash\{0\}$. Since

$$
\begin{aligned}
\left(A \circ a^{2}\right] \circ H \circ\left(A \circ a^{2}\right] & \subseteq\left(A \circ a^{2} \circ H \circ A \circ a^{2}\right] \\
& \subseteq\left(A \circ A^{2} \circ H \circ A \circ a^{2}\right] \\
& =\left(A \circ A \circ(A \circ H \circ A) \circ a^{2}\right] \\
& \subseteq\left(A^{3} \circ a^{2}\right] \\
& \subseteq\left(A \circ a^{2}\right] \text { and } \\
H \circ\left(A \circ a^{2}\right]^{2} & =H \circ\left(A \circ a^{2}\right] \circ\left(A \circ a^{2}\right] \\
& \subseteq\left(H \circ A \circ a^{2} \circ A \circ a^{2}\right] \\
& \subseteq\left(H \circ A \circ A^{2} \circ A \circ a^{2}\right] \\
& =\left(\left(H \circ A^{2}\right) \circ A \circ A \circ a^{2}\right] \\
& \subseteq\left(A^{3} \circ a^{2}\right] \\
& \subseteq\left(A \circ a^{2}\right] .
\end{aligned}
$$

Thus, $\left(A \circ a^{2}\right]$ is a $(0,2)$-bi-hyperideal of H contained in A. Hence, $\left(A \circ a^{2}\right]=\{0\}$ or $\left(A \circ a^{2}\right]=A$. Since $\left(H \circ a^{2}\right]=A$ for every $a \in A \backslash\{0\}$. Then, $a^{2} \neq\{0\}$. Therefore, there exist $0 \neq x \in a^{2} \subseteq A$. Clearly, $x^{2} \neq\{0\}$ and $x^{2} \subseteq a^{2} \circ a^{2} \subseteq A \circ a^{2} \subseteq\left(A \circ a^{2}\right]$. Hence, $\left(A \circ a^{2}\right]=A$ and conclude by Corollary 2.11 that A is $0-(0,2)$-bisimple. By Theorem 2.12, applies A is left 0 -simple.

Acknowledgements

This research was supported by Research and Development Institute, Buriram Rajabhat University.

References

[1] F. Marty, Sur uni generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm (1934) 45-49.
[2] D.N. Krgović, On 0-minimal bi-ideals of semigroups, Publ. Inst. Math. (1980) 135137.
[3] D.N. Krgović, On 0-minimal (0,2)-bi-ideal of semigroups, Publ. Inst. Math. (1982) 103-107.
[4] S. Hobanthad, W. Jantanan, On 0-minimal bi-hyperideal of semihypergroups with zero, National and International Research Conference, Buriram, Thailand (2015) 117-121.
[5] W. Jantanan, T. Changphas, On 0-minimal (0,2)-bi-ideal in ordered semigroups, Quasigroups Related Systems 21 (2013) 51-58.
[6] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[7] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics (Dordrecht), Kluwer Academic Publishers, Dordrecht, 2003.
[8] D. Heidari, B. Davvaz, On ordered hyperstructure, U.P.B. Sci. Bull. Series A 73 (2) (2011) 85-97.
[9] T. Changphas, B. Davvaz, Bi-hyperideals and Quasi-hyperideals in Ordered Semihypergroups, Ital. J. Pure Appl. Math. 35 (2015) 493-508.

